2.6 如何创建线程池


友情提醒: 本系列所有的代码均在Python3下编写。Python2中可能有所差异。

2.6.1 使用第三方模块

在使用多线程处理任务时也不是线程越多越好,由于在切换线程的时候,需要切换上下文环境,依然会造成cpu的大量开销。为解决这个问题,线程池的概念被提出来了。预先创建好一个较为优化的数量的线程,让过来的任务立刻能够使用,就形成了线程池。

在Python3中,创建线程池是通过concurrent.futures函数库中的ThreadPoolExecutor类来实现的。

import time
import threading
from concurrent.futures import ThreadPoolExecutor


def target():
    for i in range(5):
        print('running thread-{}:{}'.format(threading.get_ident(), i))
        time.sleep(1)

#: 生成线程池最大线程为5个
pool = ThreadPoolExecutor(5)

for i in range(100):
    pool.submit(target) # 往线程中提交,并运行

从结果来看,前面设置线程池最大线程数5个,有生效。

running thread-11308:0
running thread-12504:0
running thread-5656:0
running thread-12640:0
running thread-7948:0

running thread-11308:1
running thread-5656:1
running thread-7948:1
running thread-12640:1
running thread-12504:1

...
...

2.6.2 自定义线程池

除了使用上述第三方模块的方法之外,我们还可以自己结合前面所学的消息队列来自定义线程池。

这里我们就使用queue来实现一个上面同样效果的例子,大家感受一下。

import time
import threading
from queue import Queue

def target(q):
    while True:
        msg = q.get()
        for i in range(5):
            print('running thread-{}:{}'.format(threading.get_ident(), i))
            time.sleep(1)

def pool(workers,queue):
    for n in range(workers):
        t = threading.Thread(target=target, args=(queue,))
        t.daemon = True
        t.start()

queue = Queue()
# 创建一个线程池:并设置线程数为5
pool(5, queue)

for i in range(100):
    queue.put("start")

# 消息都被消费才能结束
queue.join()

输出是和上面是完全一样的效果

running thread-11308:0
running thread-12504:0
running thread-5656:0
running thread-12640:0
running thread-7948:0

running thread-11308:1
running thread-5656:1
running thread-7948:1
running thread-12640:1
running thread-12504:1

...
...

构建线程池的方法,是可以很灵活的,大家有举可以自己多研究。但是建议只要掌握一种自己熟悉的,能快速上手的就好了。


关注公众号,获取最新干货!